超高鋼製煙突の動特性評価

(その2 2自由度 R D 法と FDD による動特性評価)

正会員	吉田 昭仁*	田村 幸雄*
正会員	舛田 健次**	伊藤 隆文***

常時微動実測	RD 法	FDD 法
固有振動数	減衰定数	

1. はじめに

前報¹⁾に引き続き H 煙突の動特性の解析結果を示す。本解 析では前報の 3 日間のデータを繋ぎあわせ、計 90 分の常時 微動データとしてそれぞれの解析を行なった。

2. 解析方法

2.1 RD 法による解析方法

常時微動により得られた各成分の加速度データのパワース ペクトル密度を求め、卓越振動数のピークが十分に落ちきっ た幅でバンドパスフィルターをかけ、RD法を適用して減衰 波形を求めた。その際に、パワースペクトル密度の固有振動 数のピークに近接するピークがある場合はRD減衰波形がビ ートし、1自由度系の式を用いて正確な減衰定数を算出する ことが難しい。その場合は、例えば2自由度系の自由振動波 形を当てはめる等が必要となる。ここでは、RD波形を2つ の1自由度系の振動が重畳しているものと見なし、下式に基 づき、最小2乗法を用いて、それぞれの固有振動数および減 衰定数を推定した。

$x_{i} = \frac{x_{0_{i}}}{\sqrt{1 - h_{i}^{2}}} e^{-h_{i}\omega_{i}t} \cos\left(\sqrt{1 - h_{i}^{2}}\omega_{i}t - \phi_{i}\right)$					
$x = \sum_{i=1}^{2} x_i + m$					
ここで、					
x:RD波形	$x_i: i次の自由振動波形$				
x_{0_i} : i 次の自由振動波形の初期値	h,:i次の減衰定数				
ω_i : i 次の固有円振動数	<i>t</i> :時間				
ϕ_i : i 次の初期位相	m:RD波形の時間平均値				

2.2 FDD 法による解析方法

固有振動数のピークが複数近接して存在する場合の有効な システム同定手法として Frequency Domain Decomposition (FDD)法と呼ばれる手法があり²⁾³、本研究においても FDD法による解析を行なった。

FDD 法とは、観測によりえられた応答値群のスペクトル行 列を求め、特異値分解 (Singular Value Decomposition)を行な い、固有振動数や固有ベクトルおよび減衰定数を推定する手 法である。

3. 解析結果

図 1 に EW 方向の加速度のパワースペクトル密度を示す。 なお、図には RD 法を用いる際のバンドパス幅も示した。 0.40Hz 付近に明瞭なピークが見られるが、近接して 0.41Hz にもピークがある。また、これらの 2 次振動成分に相当する と思われる 1.5Hz 付近にも明確なピークが見られる。

Dynamic characteristics of a tall steel chimney.

-Part 2 Evaluation of dynamic characteristics by 2DOF-RD technique and FDD-

高さ 230m に設置された EW 方向の加速度の時系列波形に RD 法を適用して得られた減衰波形を図 2 に示す。RD 減衰波 形はビートしており、1 自由度系の自由振動波形でフィッテ ィングすることができない。前述の 式を用いて、最小 2 乗法により 2 つの固有振動数と減衰定数を求めた結果、低次 側が固有振動数 0.40Hz、減衰定数 0.18%、高次側が 0.41Hz、 0.30%と推定された。3.4 次についても同様の解析を行なった。

図 3 に FDD 法により得られた特異値の周波数分布、図 4 に図 3 の振動数の幅を 0.1-0.7Hz に拡大した周波数分布を示 す。図 3 はパワースペクトル密度と同様の形状の周波数分布 が見られるが、図 4 の拡大図でわかるように、0.40Hz と 0.41Hz の両方のピークが出ている特異値曲線の下に、それら の谷の周波数付近にピークを持つ特異値曲線が見られる。固 有値が近接する場合には、この 2 つめの特異値曲線のピーク の左右を延長することによって分離した固有振動モードの存 在を確認することができる。

図2 RD減衰波形(EW方向,高さ220m)

Akihito YOSHIDA, Yukio TAMURA, Kenji MASUDA, Takayoshi ITO

図 5 に、特異値の周波数分布から 1 次モード成分を分離し て得た自己相関関数を示す。RD 法により得られた減衰波形 と比較して、ビートしておらず、1 次モードのみに分離され ている。

図 6 に FDD 法での FFT 個数による減衰定数の変化を示す。 FFT 個数が少ない場合には、周波数分解能が低いため、減衰 定数が大きく推定されてしまうが、FFT 個数を増加させてい くに従い、減衰定数はある値に収束していくことが分かる。

*東京工芸大学工学部建築学科 **東京電力株式会社電力技術研究所建築グループ ***東電設計株式会社建築本部建築構造技術部 1 次モードの減衰定数は 0.2%程度、2 次モードの減衰定数は 0.3%程度に収束すると考えられる。

図 7 にパワースペクトル密度および FDD 法により得られた 振動モード形を示す。両者は非常に良く対応していることが 分かる。

表1にRD法およびFDD法により得られた動特性を示す。 FDD法では、8次の固有振動数まで明確にできた。2自由度 を想定したRD法による結果と、FDD法による結果の対応は 固有振動数、減衰定数とも概ね良好である。

まとめ

以上、2自由度を想定した RD 法、および FDD 法を用いて、 固有値の近接した鋼製煙突の動特性の推定を行ない、概ね良 好な対応を得た。

参考文献

1) 舛田他、超高鋼製煙突の動特性評価(その1 常時微動観 測)、日本建築学会大会学術講演梗概集、2002

2) R. Brincker el al., Modal Identification form Ambient Responses using Frequency Domain Decomposition, Proc. of the 19th IMAC, pp625-630, 2001.2

3) Y.Tamura et al., Amient vibration testing & modal identification of an office building, Proc. of the 20th IMAC, pp141-146, 2002.2

図7 振動モード形 (NS方向)

表1 解析により得られた動特性

次数	固有振動数(Hz)		<u>減衰定数(%)</u>	
	RD 法	FDD 法	RD 法	FDD 法
1次	0.40	0.40	0.18	0.24
2次	0.41	0.41	0.30	0.39
3次	1.47	1.47	0.83	0.3
4次	1.53	1.52	0.85	0.91
5次	2.17	2.17	0.55	0.65
6次	2.38	2.38	0.42	0 39
7次	-	2.87	-	-
8次	-	3.10	-	0.77

*Tokyo Institute of Polytechnics

**Tokyo Electric Power Company

***Tokyo Electric Power Services CO., LTD.