揮発性有機化合物の放散・吸脱着等のモデリングとその数値予測に関する研究 (その24)

員旨

## FLEC 内の化学物質放散性状に関する CFD 解析

| 正会員( | D村上周三 | (東大生産技術研究所) | 正会 |
|------|-------|-------------|----|
| 学生会員 | 朱 清宇  | (東京大学大学院)   | 正会 |
| 正会員  | 田辺新一  | (早稲田大学)     |    |

## 1序

FLEC(Field and Laboratory Emission Cell) <sup>×1)</sup> に おけるキャビィティ内の流れ場、拡散場を解析し、 建材表面からの化学物質の放散性状を調べた。別 報<sup>×2)</sup>では、主として蒸散支配型建材を対象にした 解析について報告した。本報では、これに加えて、 内部拡散支配型建材と複合型(蒸散+拡散)建材に 関し、その放散性状を解析した結果を蒸散支配型 の場合と比較して報告する。本解析により FLEC の化学物質放散速度測定の特徴が明らかにされた。 **2 FLEC キャビィティの構成**(図 1)

図 1 にデンマークのボルコフ氏が考案した FLEC <sup>x1)</sup>の外形と断面を示す。FLEC 本体や付属部分は 全てステンレス製である。清浄空気が FLEC キャ ビィティ外周部の幅 1mm の入口より吹出され、建 材表面に沿ってキャビィティ中央に収束し、上部 より排出される。FLEC は、通常表 1 に示されるよ う極めて大きな換気回数で放散速度測定が行われ るため、建材表面の物質伝達率が放散速度を支配 する蒸散支配型建材の測定には不向きと言われて いる。今回、それ以外の問題点についても明らか にした。

## 3 流れ場解析と解析条件(表 1,3)

換気量 2.4x10<sup>-2</sup>m<sup>3</sup>/h(換気回数 686 回/h)と 1.2x10<sup>-2</sup>m<sup>3</sup>/h(換気回数 343 回/h)の2ケース。CFD 解析条件は表3に示す。流れ場解析は、Low-Re k- $\varepsilon$ モデル(Abe-Nagano model)<sup>x3)</sup>と層流の2ケー スを行う。

# **4 拡散場解析と試料建材のモデル化**(表 1~3,図 1,2)

流れ場解析の後に、試料建材設置面(図 1-(2)) に建 材モデルの物質放散の境界条件を与え、等温状能 を仮定し物質放散と拡散場解析を行う。試料建材 は、蒸散支配型放散、内部拡散支配型放散と複合 建材(蒸散+内部拡散)の3種類。蒸散支配型建材の 場合は建材表面に既知の気相濃度を境界条件とし て与える。内部拡散型の建材モデルとして、合成 ゴム (SBR)<sup>×4)</sup>を扱う。複合建材(蒸散+内部拡散 支配)の建材モデルとして、(純液 Decane+壁紙材) を扱う。FLEC 流入空気の濃度はゼロとする。



加藤信介 (東大生産技術研究所)

伊藤一秀 (東京工芸大学)

図2 対象建材のモデル化とメッシュ分割

#### 表1 解析ケースと建材モデル

|       | 換気<br>量<br>(g/m <sup>3</sup> )<br>x10 <sup>-2</sup> | 換気<br>回数<br>(回/h) | 温度<br>(℃) | 建材<br>モデル | 乱流<br>モデル                                   |
|-------|-----------------------------------------------------|-------------------|-----------|-----------|---------------------------------------------|
| case1 | 2.4                                                 | 686               |           | 蒸散支配型     |                                             |
| case2 | 1.2                                                 | 343               |           | Water     | LOW-INC                                     |
| case3 | 2.4                                                 | 686               | 21.8      | Decane 液  | 届法                                          |
| case4 | 1.2                                                 | 343               | 22.7      |           | 眉肌                                          |
| 02005 | 1 2                                                 | 343               | 22.7      | 拡散支配型     | 届达                                          |
| Caseo | 1.2                                                 | 545               | 30        | (TVOC)    | 「「」のしていていていていていていていていていていていていていていていていていていてい |
| 63506 | 1 2                                                 | 343               | 22.7      | 複合建材<br>( | 届法                                          |
| Caseo | 1.2                                                 | 545               | 30        | Decane 液  | 宿儿                                          |

| 表 2 C₀(飽和気相濃度),C'₀(SBR 初期濃度), D。 (SBR と壁紙杯             |
|--------------------------------------------------------|
| 中の有効拡散係数)と D <sub>a</sub> (空気中の物質拡散係数) $^{	imes 5,6)}$ |

|                  | 温度<br>(℃) | C <sub>0</sub><br>(g/m <sup>3</sup> ) | C' <sub>0</sub><br>(g/m <sup>3</sup> ) | D <sub>c</sub><br>(SBR,壁紙)<br>(m <sup>2</sup> /s) | D <sub>a</sub><br>(m²/s) |
|------------------|-----------|---------------------------------------|----------------------------------------|---------------------------------------------------|--------------------------|
| case4<br>(Water) | 21.8      | 19.9                                  |                                        |                                                   | 2.27x10⁻⁵                |
| case5            | 22.7      |                                       | 192                                    | 1.10x10 <sup>-14</sup>                            | 5.94x10 <sup>-6</sup>    |
| (TVOC)           | 30        |                                       | 160                                    | 4.20x10 <sup>-14</sup>                            | 6.15x10 <sup>-6</sup>    |
| case6            | 22.7      | 10.0                                  |                                        | 2.30x10 <sup>-7</sup>                             | 4.75x10 <sup>-6</sup>    |
| (Decane)         | 30        | 14.0                                  |                                        | 8.78x10 <sup>-7</sup>                             | 4.81x10 <sup>-6</sup>    |

Physical Model and Numerical Analysis of VOCs Emission from Building Materials (Part 25) CFD Analysis of VOCs emission Within FLEC Cavity

## 4.1 蒸散支配型建材モデル(図 2(1))

FLECはまだ乾いていないペイントなど濡れた面からの放散量の測定を意図したものではないが、蒸散支配型放散の特徴である建材表面で既知の気相濃度が与えられるという条件をモデル化するため、純水(Water)と純液デカン(Decane)の2ケースを解析する(表 1,2,3)。別報<sup>×7)</sup>のSmall Test Chamberでの解析条件に合わせ、純水面の温度は 21.8℃、純液Decane 面の温度は 22.7℃とする。建材表面に既知の気相濃度を境界条件として与え、拡散場の定常解析を行う。

**4.2** 内部拡散支配型建材モデル(図 2(2)) 内部拡散型の建材モデルとして、合成ゴム(SBR)<sup>文4)</sup> を扱う。SBR の厚さは 2mm と仮定する。SBR 内 部の TVOC 初期濃度 C<sup>2</sup>0は文5を参考に、23℃の場 合 192g/m<sup>3</sup> 一様、30℃の場合 160 g/m<sup>3</sup> 一様とし、 SBR内部の有効拡散係数D<sub>c</sub>は23℃の場合 1.1x10<sup>-14</sup> m<sup>2</sup>/s、30℃の場合 4.2x10<sup>-14</sup> m<sup>2</sup>/s と仮定した(表 2)。

SBR 内部にはメッシュ(200(x)X750(r)のメッシュ)(図 2(2))を設け、建材内と FLEC 内の全領域を連成して非定常解析を行う。

4.3 複合建材(蒸散+内部拡散支配)モデル(図 2(3)) 壁紙材と純液 Decane の境界面に Decane 既知の気 相濃度を与え、壁紙材の内部にもメッシュ (100(x)X75(r)のメッシュ)(図 2(3))を設け、建材内と FLEC 内の全領域を連成して定常解析を行う。有効 拡散係数 D。は IZM 規格の壁紙材を用いて、カップ 法により我々が測定した値を用いた<sup>文8)</sup>(表 2)。内部 拡散支配型建材モデルと同じく建材温度 23℃の場 合と 30℃の場合に関して検討する。

## 5 流れ場の解析結果(図 3,4)

図 3 に層流解析(case3)の FLEC キャビティ内の風 速分布を示す。建材設置面近傍のスカラー風速は 8x10<sup>-3</sup>m/s 程度である。FLEC の入口の吹出速度 V<sub>in</sub>(1. 4x10<sup>-2</sup>m/s(case1,3,5)、7.0x10<sup>-3</sup>m/s(case2,4)) で無次元化した各ケースの建材設置面近傍の風速 分布を図 4 に示す。Low-Re k- *ε* モデルによる 解析 と層流解析は全く同一の流れ場を示した(図 4)。 FLEC 入口風速・入口幅により定義した Reynolds 数は case1,3 で 0.93、case2,4 で 0.46 である。FLEC キャビィティ内の流れ場はほぼ完全な層流であり、 CFD 解析には乱流モデルに係る誤差が発生する余 地がなく、結果に充分な信頼性を置くことが出来る。

# 6 濃度場の解析結果(図 5,6,表 4)

k-*ε* 解析と層流解析が同一のため、拡散場解析は層 流解析結果に関してのみ示す。表 4 に別報<sup>×7)</sup> で示 した Small Test Chamber の実験結果と共にその蒸

#### 表3 CFD の解析条件

| 座標系 円筒 メッシュ(2D) 27,300          乱流モデル       Low-Re k-ε (Abe-Nagano model) <sup>×*)</sup> 、層流         移流項       QUICK         流入       レow-Re         境界条件       User (Low-Re)         水in = 0(case1 ~ 6)         火in = 1.4x10 <sup>2</sup> m/s(case1,3)         Vrim=7.0x10 <sup>3</sup> m/s(case2,4,5,6)         Vrim=7.0x10 <sup>3</sup> m/s(case2,4,5,6)         Vrim=7.0x10 <sup>3</sup> m/s(case2,4,5,6)         水in = 0/case1 ~ 6)         kin = 3/2 · (Un x) 0.05) <sup>2</sup> ,         ε in = C, · kin 32 · (Un x)         jugg % (A)         留量保存       kout, ε out=free slip         「B流       Vrim=1.4x10 <sup>2</sup> m/s(case1,3)         jugg % (A)       State         (1.0x10 <sup>2</sup> m/s)       (Case1,3)         (A)       FLEC + v ビ f 7 f hoom         (A)       FLEC + v ビ f 7 f hoom         (A)       (Case1,3)         (A)       (Case1,3)         (A)       (Case1,3)         (A)       (Case1,3)         (A)       (A)         (A)       (A)         (A)       (A)         (A)       (A)         (B)       (Case1,3)         (A)       (A)         (B)       (B)         (A)       (A)         (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 乱流モデル Low-Re K- ε (Abe-Nagano model) **). 層流<br>移流項 QUICK       水in=1.4×10 <sup>2</sup> m/s(case1,3)       火in=1.4×10 <sup>2</sup> m/s(case1,3)       火in=7.0×10 <sup>3</sup> m/s(case2,4,5,6)       Vxin=7.0×10 <sup>3</sup> m/s(case1,3)       火in=7.0×10 <sup>3</sup> m/s(case1,3)       火in=7.0×10 <sup>3</sup> m/s(case1,3)       火in=7.0×10 <sup>3</sup> m/s(case1,3)       レow-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       上のw-Re       レow-Re       上のw-Re       レow-Re       レow-Re       レow-Re       レow-Re       レow-Re       レow-Re       レow-Re       レow-Re       レow-Re       ア       小の       「Last 14,23       「Case1,3:       マー       (a)       (b) E       (case1,3:       (case2,4,5,6: <t< th=""><th>座標系</th><th>円筒<br/>座標系</th><th>メッシュ(2D)</th><th>27,300</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 座標系                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 円筒<br>座標系                                                                                                                                                                                                                                                                          | メッシュ(2D)                                                                                                      | 27,300                                                                                                      |  |  |  |  |  |
| R         QUICK         Quick         V:in=1.4x10 <sup>2</sup> m/s(case1,3)           液入<br>境界条件         Low-Re         V:in=7.0x10 <sup>3</sup> m/s(case2,4,5,6)         V:in=7.0x10 <sup>3</sup> m/s(case2,4,5,6)           水in = 3/2 · (Un × 0.05) <sup>2</sup> ,<br>E in=C ·· kin <sup>3/2</sup> · (Lin + 1.4x10 <sup>2</sup> m/s(case1,3))V_xin = 0         V:in=1.4x10 <sup>2</sup> m/s(case2,4)V_xin = 0           流出<br>境界条件         留量保存         kout, E out=free slip           壁面<br>境界条件         no-slip         対称面 $\partial V_r / \partial r = 0$ (1.0x10 <sup>2</sup> m/s)         (1.0x10 <sup>2</sup> m/s)         (1.0x10 <sup>2</sup> m/s)           口         連相設置面         (1.0x10 <sup>2</sup> m/s)           (1.0x10 <sup>2</sup> m/s)         (1.0x10 <sup>2</sup> m/s)           (2.0x10 <sup>3</sup> m/s)         (2.0x10 <sup>3</sup> m/s)           (2.0x10 <sup>3</sup> m/s)         (2.0x10 <sup>3</sup> m/s)           (2.0x10 <sup>3</sup> m/s)         (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 乱流モデル                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low-Re k                                                                                                                                                                                                                                                                           | - ε (Abe-Nagano i                                                                                             | model) <sup>文4)</sup> . 層流                                                                                  |  |  |  |  |  |
| ウッル・ス     COLCK     Vr:m=1.4x10 <sup>2</sup> m/s(case1,3)       流入     Low-Re     Vr:m=7.0x10 <sup>3</sup> m/s(case2,4,5,6)       火im = 0/case1~6)     Vr:m=0(case1~6)       水m = 0/case1~6)     Vr:m=1.4x10 <sup>2</sup> m/s(case1,3)/vr:m=0       水m     層流     Vr:m=1.4x10 <sup>2</sup> m/s(case1,3)/vr:m=0       水m     一     Vr:m=1.4x10 <sup>2</sup> m/s(case1,3)/vr:m=0       水m     一     Vr:m=1.4x10 <sup>2</sup> m/s(case1,3)/vr:m=0       水m     一     Vr:m=7.0x10 <sup>3</sup> m/s(case2,4)/vr:m=0       水m     一     Vr:m=7.0x10 <sup>3</sup> m/s(case2,4)/vr:m=0       水m     M     Image: No-slip       水m     M     Image: No-slip       水m     M     Image: No-slip       水m     M     Image: No-slip       水m     Image: No-slip     Image: No-slip       水m     Image: No-slip     Image: No-slip       水m     Image: No-slip     Image: No-slip       Vin=1.4x10 <sup>2</sup> m/s     Image: No-slip     Image: No-slip       Image: No-slip     Image: No-slip <td< th=""><th>20000000000000000000000000000000000000</th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                             |  |  |  |  |  |
| 層流       Vr,in=7.0x10 <sup>3</sup> m/s(case1,3)V,in=0         流出       項量保存       kout, $\varepsilon$ out=free slip         壁面       no-slip       対称面 $\partial V_r / \partial r = 0$ 「1.0x10 <sup>2</sup> m/s]       [1.0x10 <sup>2</sup> m/s]         「LEC出口       「LEC出口         「加」       「加」         「二       「二         「二       「二         「二<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 流入<br>境界条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 注現</u> QUICK<br>人<br>条件 QUICK $V_{r,in}=1.4x10^{-2}m/s(case1,3)$ $V_{r,in}=7.0x10^{-3}m/s(case2,4,5,6)$ $V_{x,in}=0(case1\sim6)$ $k_{in}=3/2 \cdot (U_{in} \times 0.05)^{2},$ $\varepsilon_{in}=C_{\mu} \cdot k_{in}^{-3/2} / L_{in}$ $L_{in}=1/7 L_{0}=1.43 \times 10^{-4} m$ |                                                                                                               |                                                                                                             |  |  |  |  |  |
| 流出<br>境界条件     質量保存     kout, ɛout=free slip       壁面<br>境界条件     no-slip<br>条件     対称面     Nr, / み = 0       「LEC出口     [1.0x10 <sup>-2</sup> m/s]       「LEC出口     拡大図       「LEC出口     「LEC出口       「UIII 1 At No main and the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 層流                                                                                                                                                                                                                                                                                 | $V_{\rm s} = 7.0 \times 10^{-3} {\rm m/s}$                                                                    | $(case 2.4)V_{x,m} = 0$                                                                                     |  |  |  |  |  |
| 壁面<br>境界条件       no-slip<br>条件       対称面 $\partial V_r / \partial r = 0$ [1.0x10 <sup>-2</sup> m/s]       [1.0x10 <sup>-2</sup> m/s]         「FLEC出口       拡大図       「FLEC出口         加       健材設置面       (a.4)         四       健材設置面       (a.4)         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 流出<br>境界条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 質量保存                                                                                                                                                                                                                                                                               | $k_{out}$ , $\varepsilon_{out}$ =free s                                                                       | slip                                                                                                        |  |  |  |  |  |
| 現示来性<br>現示来性<br>現示来性<br>現示来性<br>(1.0x10 <sup>2</sup> m/s)<br>(1.0x10 <sup>2</sup> m/s)<br>(FLEC出口<br>拡大図<br>(FLEC出口<br>拡大図<br>(Gase1,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase1,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=1.4x10 <sup>2</sup> m/s)<br>(ase2,4,5,6:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase4,3:<br>Vin=7.0x10 <sup>3</sup> m/s)<br>(ase5,30°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 壁面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no-slip<br>タル                                                                                                                                                                                                                                                                      | 対称面                                                                                                           | $\partial V_{u} / \partial r = 0$                                                                           |  |  |  |  |  |
| (1.0x10 <sup>2</sup> m/s)<br>(FLEC出口<br>拡大図<br>(FLEC出口<br>拡大図<br>(FLEC出口<br>(本大図)<br>(FLEC出口<br>(本大図)<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3:<br>(Case1,3: | <b>境乔</b> 余件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 余件                                                                                                                                                                                                                                                                                 |                                                                                                               | - ,                                                                                                         |  |  |  |  |  |
| 図3 FLEC キャビィティ内の風速分布(case3)<br>図3 FLEC キャビィティ内の風速分布(case3)<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLEC 出口<br>拡大図                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                             |  |  |  |  |  |
| ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                               |                                                                                                             |  |  |  |  |  |
| $x10^4$ (1)蒸散支配型建材<br>(case4:Decane,22.7°C)<br>$z^4$ (case5:30°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | お設置面〕                                                                                                                                                                                                                                                                              | 1111<br>                                                                                                      | ,<br>)<br>)<br>(case3) ,                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 3 FLEC<br><sup>1</sup><br>図 3 FLEC<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.6<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br>0.8<br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> | 才設置<br>面)<br>まャビィ<br>建<br>様<br>様<br>なケースで<br>入口<br>(55 FL<br>す)<br>ない<br>ない<br>ない<br>ない<br>ない<br>ない<br>ない<br>ない<br>ない<br>ない                                                                                                                                                        | ティ内の風速分<br>材設置面上 0.5mm<br>上 0.1mm<br>とも重な<br>きない。<br>中心<br>ちてイティ<br>使のスカラー風<br>x10 <sup>4</sup> <sup>41</sup> | た<br>本(case3) r<br>Case1,3:<br>Vin=1.4x10 <sup>-2</sup> m/s<br>case2,4,5,6:<br>Vin=7.0x10 <sup>-3</sup> m/s |  |  |  |  |  |



散特性をまとめる。

6.1 蒸散支配型建材((図 5,図 6(1))

case3,4 とも、水の場合も Decane の場合も出口濃

度と建材モデル表面気相濃度は等しい(表4)。純水 の放散速度(放散フラックス、case3)は 26.95(g/m<sup>2</sup>h) <sup>注1)</sup>、Decane の放散速度(case3)は 13.55(g/m<sup>2</sup>h)。 この種の化学物質濃度の測定においては一般に気 中濃度が、建材表面濃度より低いことが基本的前提 となるが、FLEC での蒸散支配型建材ではこれが成 立しない。気中での拡散係数 D<sub>a</sub>は化学物質によっ て大きく変わるものではないので、この結果は等温 条件が満たされる限り、材料表面の気相濃度が気流 性状に依存せずに定められる蒸散支配型建材すべ てについて、また表面気相濃度の大小にかかわらず あてはまるものと考えられる。キャビィティ内の濃 度分布を図 6(1)に示す。入口からわずかの距離です ぐ出口濃度と等しくなっている。これに対応して図 5 に示すように試料建材からの放散速度は入口近傍 では極端に大きいが、入口からほんの数 cm 位の距 離で放散速度はすぐゼロに近くなり中央付近まで 殆どゼロとなっている。これに対し Small Test Chamber の場合、出口濃度は飽和気相濃度よりやや 低く、試料建材表面境界層の拡散速度が放散量を支 配することをある程度再現する結果となっている。 換気量が case3 の 2 分の 1 となる case4 の場合、 純水と Decane の放散速度は換気量に比例してそれ ぞれ case3 の解析結果の2分の1となる。 6.2 内部拡散支配型建材((図 5,図 6(2),表 4) 初期値より20時間後の結果を示す。case5の場合、 建材表面平均濃度は 23℃の場合:1.21x10<sup>-4</sup>(g/m<sup>3</sup>)、 30°Cの場合:1.96x10<sup>-4</sup>(g/m<sup>3</sup>)(表 4)となる。キャビィ ティ内は、鉛直方向、水平方向に濃度分布が形成さ れている(図 6(2))。建材面からの TVOC 放散速度は 蒸散支配型建材のような大きな分布が存在せず、 23 ℃の場合:1.52x10<sup>-4</sup>(g/m<sup>2</sup>h)、30 ℃の場合: 2.47x10<sup>-4</sup>(g/m<sup>2</sup>h)とほぼ一定となる(図 5)。 6.3 複合建材(蒸散+内部拡散支配)(図 5,図 6(3)) 複合建材 case6 の場合、壁紙材表面の平均濃度は 23°Cの場合: 7.63(g/m<sup>3</sup>)、30°Cの場合: 13.07(g/m<sup>3</sup>)(表 4)。建材からの Decane 放散速度は 23℃の場 合:6.58(g/m<sup>2</sup>h)、30℃の場合:9.50(g/m<sup>2</sup>h)となる。純 然たる蒸散支配の case4 の場合より多少小さい。キ ャビィティ内の濃度分布を図 6(3)に示す。23℃の場 合、入口から約30mmの距離で出口濃度と等しく、 建材表面濃度より大きくなる;30℃の場合、入口か ら約10mmの距離で出口濃度とほぼ等しくなる。こ れに対応して図5に示すように複合建材からの放散 速度は、①23℃の場合入口から約 30mm 位の距離 で放散速度はゼロに近くなり中央付近まで殆どゼ

□、230℃の場合入口から約 10mm 位の距離で放



散速度はゼロに近くなり中央付近まで殆どゼロと なる。

#### 7 物質伝達率(図 5,6,表 4)

7.1 蒸散支配型建材(図 5,6,表 4)

純水、純 Decane において建材表面から気中への物 質伝達は入口のごく近くの極めて限られた領域の みで行われており(図 5)、その建材表面平均物質伝 達率を求めることに物理的意味はあまりない<sup>注4)</sup>。 強いて参照濃度を FLEC 入口の濃度とすると表4に 示すように、純水、純 Decane の物質伝達率はほぼ 一致し(case3 で 1.35(g/m<sup>2</sup>h(g/m<sup>3</sup>))、参照濃度を

| 表4物質の放散速度、 | 物質伝達率の予測結果 |
|------------|------------|
|------------|------------|

|                                |                                    | 蒸散支配型                                                       |       |                 |                 |                          |                         | 拡散支配型                 |                       | 複合建材         |        |
|--------------------------------|------------------------------------|-------------------------------------------------------------|-------|-----------------|-----------------|--------------------------|-------------------------|-----------------------|-----------------------|--------------|--------|
|                                |                                    | (Water) (Decane)                                            |       |                 |                 |                          |                         | (TOVC)                |                       | (Decane+壁紙材) |        |
| 測定方法                           |                                    | FLEC FLEC Small<br>(case3) (case4) Small<br>Test<br>chamber |       | FLEC<br>(case3) | FLEC<br>(case4) | Small<br>Test<br>chamber | FLEC<br>(case5,20hours) |                       | FLEC<br>(case6)       |              |        |
| 温度(℃)                          |                                    | 21.8                                                        |       |                 | 22.7            |                          | 22.7                    | 30.0                  | 22.7                  | 30.0         |        |
| 放散速度(g/n                       | n²h)                               | 26.95                                                       | 13.51 | 29.9            | 13.55           | 6.74                     | 46.4                    | 1.52x10 <sup>-4</sup> | 2.47x10 <sup>-4</sup> | 6.58         | 9.50   |
| 建材表面濃度(                        | <b>ξ</b> (g/m <sup>3</sup> ) 19.90 |                                                             |       | 10.00           |                 | 1.21x10 <sup>-4</sup>    | 1.96x10 <sup>-4</sup>   | 7.63                  | 13.07                 |              |        |
| 出口濃度(g/                        | m <sup>3</sup> )                   | 19.89 18.0                                                  |       | 18.0            | 9.99 0.6        |                          | 2.25x10 <sup>-4</sup>   | 3.67x10 <sup>-4</sup> | 9.70                  | 13.99        |        |
| 飽和気相濃(g/m <sup>3</sup> ) 19.90 |                                    |                                                             | 10.00 |                 |                 |                          | 10.00                   | 14.00                 |                       |              |        |
| 物質伝達率<br>(g/m²h・(g/m³))        | 注 2)                               | 1.35                                                        | 0.68  | 1.50            | 1.36            | 0.67                     | 4.64                    | 1.25                  | 1.26                  | 0.87         | 0.73   |
|                                | 注 3)                               | œ                                                           | 8     | 15.7            | ∞               | ∞                        | 4.9                     | -1.46                 | -1.44                 | -3.12        | -10.33 |

FLEC 出口濃度とすると、出口濃度は建材表面濃度 に一致しているため濃度差ゼロとなり、物質伝達率 は無限大に近い値になる。

7.2 内部拡散支配型建材(図 5,6,表 4)

合成ゴム(SBR,2mm)の平均伝達率は、FLEC入口濃 度を参照濃度とすると、23℃の場合: 1.25(g/m<sup>2</sup>h(g/m<sup>3</sup>))、30℃の場合:1.26(g/m<sup>2</sup>h(g/m<sup>3</sup>)) となりほぼ等しい。参照濃度をFLEC出口とすると FLEC出口濃度が建材表面の平均濃度より高くなる ため、伝達率は見掛け上負値(23℃: -1.46(g/m<sup>2</sup>h(g/m<sup>3</sup>))、30℃:-1.49(g/m<sup>2</sup>h(g/m<sup>3</sup>)))となる。 7.3 複合建材(蒸散+内部拡散支配)(図 5,6,表 4)

(Decane+壁紙材)の平均伝達率は FLEC 入口濃度を 参照濃度とし、23℃の場合 0.87(g/m<sup>2</sup>h(g/m<sup>3</sup>))となり Decane 液からの 0.68(g/m<sup>2</sup>h(g/m<sup>3</sup>))に比べ多少大き くなる。これは Decane 液のみの場合に比べ放散速 度がゼロとなる領域が減少したことに対応してい る。参照濃度を FLEC 出口とすると FLEC 出口濃度 が建材表面の平均濃度より高くなるため、伝達率は 見掛け上負値となる。

7.4 内部拡散支配及び複合型建材いずれもキャビィ ティ内に入口から出口にわたって大きな濃度分布 が存在すること、出口濃度が建材表面平均濃度より 大きくなることから、通常の物質伝達率を定義する ことは困難である。

### 8 結論

(1) FLEC キャビィティ内の流れ場は層流。2 種類の 換気量に関し、無次元化した流れ性状はほぼ同一。 (2) 蒸散支配型建材モデルの場合、①FLEC 出口濃 度は、建材表面濃度にほぼ等しく、②物質放散速度 は換気量に比例し、③放散速度は過小評価されるお それがある。(3) 内部拡散支配型建材の場合、建材 からの TVOC 放散速度は極端に小さく、キャビティ 内濃度分布と関わりなく建材面で一様な放散とな る。SBR ような内部拡散支配型建材に対して、FLEC を用いて建材からの TVOC 放散速度は正確に計測 できると考えられる。(4) 複合建材(蒸散+内部拡散 支配)の場合、建材からの放散速度が純然たる蒸散支 配の case4 の場合により多少小さい。今回壁紙材の 厚さが薄いため、蒸散支配の傾向が強く、放散速度 は過小評価されるおそれがある。

注 1)対応する気化熱は 17W/m<sup>2</sup> 必要となる。実際の蒸散過程で は、今回の等温仮定の成立は容易ではなく、蒸散速度は気化熱 の供給に律速されるものと考えられる。2)物質伝達率は FLEC と Small Test Chamber は入口の濃度 0 を参照濃度として算出。 3)物質伝達率は FLEC と Small Test Chamber の出口濃度を参 照濃度として算出。4)建材表面から FLEC 上側内表面までの距 離は入口近傍で最短の L=1mm である(図 1)。キャビィティ入口 近傍は、流路が極めて薄いため建材表面から放散された物質は 直ちに分子拡散により流れ横断方向に拡散する。ここで、分子 拡散の特性時間 T(= L<sup>2</sup>/ $\nu$ )をL  $\geq \nu$  (空気の動粘性係数)から求め ると、T=0.07(s)となる。入口の流速約 1cm/s に対し極めて短 時間に流れ横断方向に拡散が進むことが示唆される。5)本解析 は商用コード Fluent5.0(Fluent Inc.@)を用いている。

#### 参考文献

(1)P.Wolkoff,et al,(1991)Field and Laboratory Emission Cell:FLEC,IAQ91 Healthy Buildings。(2) 村上周三ら (2000), 揮発性有機化合物の放散・吸脱着等のモデリンとその数値予測 に関する研究 (その 21)CFD による FLEC 内の流れ場・拡散場 解析:日本建築学会年次大会。(3) 安部ら(1992),はく離・再付着 を伴う乱流場への適用を考慮した k-εモデル, 日本機会学会論 文集(B 編)。(4) Xudong,Y.et al(1998)Prediction of Short-Term and Long-Term VOC Emissions from SBR Bitumen-Backed Carpet Under Different Temperatures, ASHRAE。(5) 朱清宇ら (1999),揮発性有機化合物の放散・吸脱着等のモデリングとその 数値予測に関する研究(その 15), 日本空気調和・衛生工学会学 術講演梗概集。(6) 化学工学協会編:化学工学便覧.改訂三版 (1968年)。(7)伊藤ら (1999),揮発性有機化合物の放散・吸脱着 等のモデリングとその数値予測に関する研究(その 14), 日本空 気調和・衛生工学会学術講演梗概集。(8) 加藤ら(2000): 揮発性 有機化合物の放散・吸脱着等のモデリングとその数値予測に関 する研究(その17),カップ法による各種ペイント、壁紙材中の有 効拡散係数の測定、日本建築学会大会学術講演梗概集。

謝辞 本研究の一部は、科学技術庁科学技術振興調整費 (生活・社会基盤研究 生活者ニーズ対応研究「室内化学 物質空気汚染の解明と健康・衛生居住環境の開発」)に基 づいて設けられた建築学会学術委員会・室内化学物質空 気汚染調査研究委員会(委員長:村上周三 東京大学生産 技術研究所教授)の活動の一環として実施したものであ る。関係各位に深甚なる謝意を表する次第である。