揮発性有機化合物の放散・吸脱着等のモデリングとその数値予測に関する研究(その25)

小型チャンバーFLEC 内の流れ場·拡散場の3次元 CFD 解析

CFD VOCs 放散速度

1序 既報^{×1)} で小型チャンバーFLEC ^{×2)} 内の建材からの 拡散・放散性状を2次元 CFD 解析に基づき報告した。本報で は、引き続き3次元 CFD 解析について報告する。

2FLEC キャビィティの構成 (図 1) 図 1 に FLEC の外形と断 面を示す。FLEC キャビィティ(釣鐘)と底部の試料建材でチャ ンバーが構成される。清浄空気は1対のパイプを経由して FLEC キャビィティの外周部チャンネルに供給され、幅 1mm のスリットより中心に向って吹出され、キャビィティ中央に 収束し、上部より排出される。パイプから供給される空気は FLEC 外周部チャンネルに必ずしも均等に分配されず、チャ ンバー内の気流に偏りが生ずることが実験により報告されて いる^{文3)}。スリット幅が 1mm と狭いため、実験による風速測 定には問題点も多く、これらの点も含めて今回流れ場・拡散 場の性状を詳細に解析する。

3 流れ場解析と解析条件 (図 1,表 1) FLEC キャビィティの 対称性を考慮して4分の1の領域のみを解析対象とする。流 れ場は3次元 CFD 層流解析。換気回数686回/hと343回/h の2ケースを行う。CFD 解析条件は注1)を参照。

4 拡散場解析と試料建材のモデル化(図 1,表 1,2) 流れ場解 析後、建材設置面(図 1-(2)) に建材モデルの物質放散の境界条 件を与え、等温状態を仮定し物質放散と拡散場解析を行う。 建材は、蒸散支配型と内部拡散支配型の2種類。FLEC 流入 空気の濃度はゼロとする。4.1 蒸散支配型建材モデル: 蒸散 支配型建材の場合、境界条件として建材表面での気相濃度を 与えることが求められ、その正確なモデル化として建材面に 純液面を仮定。ここでは純水(Water)と純液 Decane、p-xylene、 nonane の 4 ケースを解析(表 1,2)。表面気相濃度などの条件 は、別報^{文4)}の筆者らの開発した境界層型チャンバーでの解 析条件参照。4.2 内部拡散支配型建材モデル: ここでは合成ゴ ム(SBR) ^{×1)} からの VOCs 放散を扱う。SBR の厚さは 2mm と仮定する。VOCs 初期濃度 C'oと SBR 内部の有効拡散係数 Dcは表2に示す。初期状態において建材内部での VOCs 分布 は考慮せず、一様と仮定。SBR内部は解析メッシュ(300(x)× 200(y)×300(z))を設け、建材内と FLEC の全領域を連成して 非定常の拡散解析を行う。

5 流れ場の解析結果 (図 2) case1 の場合、キャビティ外周ス リットにおいて供給パイプに接する 0°(図 1(2)参照)の場合、 風速は 28cm/s と最も早く、パイプから最も遠い 90°の場合、 0.2cm/sと極端に小さくなり、キャビティへの吹出風速は均等 ではない(図 2-2)。スリット下流の建材設置面近傍でも、風速 は0°→90°の順で遅くなる不均一な分布を示す。またキャビ ティ中心から半径約 2.5cm 内において風速は急激に小さくな る。これらの傾向は、定量的には実験における風速測定などに 問題点があり対応していないが、定性的には実験^{×3)}と良く対 応する。FLEC スリット吹出風速とスリット幅により定義した Reynolds 数は case1 で 18、 case2,3 で 9 以下、キャビィティ 内はほぼ完全な層流である。

6 濃度場の解析結果 (図 3,表 3) 6.1 蒸散支配型建材: case 1,2ともに、純水、decane、p-xylene、nonaneのいずれの場

清宇*1

正会員 〇 朱 同 村上 周三*2 同 加藤 信介*3 同 田辺 新一*4 同 伊藤 一秀*5

表1 解析ケースと建材モデル

	換気 回数 [回/h]	換気量 [m ³ /h]	建材モデル	雰囲気 温度 [°C]	乱流 モデル
case1	686	2.4 × 10 ⁻²	蒸散支配型		
case2		1.0	Water, Decane p-xylene,nonane	23.0	層流
case3	343	1.2×10 ⁻	拡散支配型 (SBR:TVOC)		

表 2 C₀ (飽和気相濃度), C'₀ (SBR 初期濃度), D (空気山の物質状数(数)とD (SBD の方効状数(数)^{文5)}

$D_a (\mathbf{L} \mathbf{X} + \mathbf{V} \mathbf{W} \mathbf{J} \mathbf{M} \mathbf{K} \mathbf{W}) \subset D_c (\mathbf{S} \mathbf{U} \mathbf{V} + \mathbf{M} \mathbf{M} \mathbf{K} \mathbf{W})$							
	温度 [℃]	C ₀ [g/m ³]	C' ₀ [g/m ³]	D _a [m²/s]	D _c [m²/s]		
Water		19.9		2.27 × 10⁻⁵			
Decane		10.0		4.75 × 10⁻ ⁶			
p-xylene	23.0	0.05		6.63 × 10⁻ ⁶			
nonane		0.03		5.07 × 10 ⁻⁶			
TVOC			192	5.94 × 10 ⁻⁶	1.1 × 10 ⁻¹⁴		

合も出口濃度と建材モデル表面気相濃度は等しい(表 3)。純水 の試料面平均放散速度注²⁾ (FLEC キャビティ内の放散面にお ける平均放散フラックス、case1)は 27.06 [g/m²h]^{注 2)}、 decane の平均放散速度(case1)は 13.59 [g/m²h]である。換気量が case1 の 2 分の 1 となる case2 の場合、純水、decane の出口 濃度は変わらず、平均放散速度は換気量に比例して case1 の2 分の 1 となる。この種の化学物質放散の測定においては一般 に気中濃度が、建材表面濃度より低いことが基本的前提となる が、FLECの場合蒸散支配型建材では試料面積が換気量に対し 相対的に過大で、これが成立しない。気中での拡散係数 Daは 化学物質によって大きく変わるものではないので、この結果は 等温条件が満たされる限り、蒸散支配型建材すべてについて、 表面気相濃度の大小にかかわらずあてはまる。キャビィティ内 濃度が入口からほんの数 cm 位の距離で試料表面濃度と等し くなるのに対応し、その局所的な放散速度は入口近傍では極め て大きな値を示すが(図 3-2)、すぐ減少し殆どゼロとなる。こ れに対し換気量に対して試料表面積を相対的に小さくした^{注5)} 境界層 チャンバーの場合、出口濃度は飽和気相濃度よりやや

Physical Modeling and Numerical Analysis of VOCs Emission from Building Materials (Part 25) 3D Numerical Analysis of Flow and Diffusion Field within FLEC Cavity

低く(表 3)^{×4)}、試料建材表面境 界層の拡散速度が平均放散量を 支配することをある程度再現す る結果となっている。<u>6.2</u>拡散 支配型建材:解析開始(初期値) より 20時間後の結果を示す。 建材面からの VOCs の局所放散 速度は蒸散支配型建材のような 大きな分布が存在せず(図 3-3)、 23 °C の 場 合 に 1.52 × 10⁴[g/m²h]とほぼ一定となる。 建材表面平均濃度は、1.53 × 10⁴[g/m³]と出口濃度 2.24 × 10⁴[g/m³]と出口濃度 3.3 表3 物質の放散速度、物質伝達率の予測結果 (雰囲気温度:23℃、()内の値は 2D 解析結果)

		蒸散支配型							拡散支配型	
			Water		decane			p-xylene	nonane	(TOVC)
チャンバータイプ		FLEC (case1) (3D)	FLEC (case2) (3D)	境界層型 チャンバー 注 5)	FLEC (case1) (3D)	FLEC (case2) (3D)	境界層型 チャンバー 注 5)	FLEC (case2) (3D)	FLEC (case2) (3D)	FLEC (case3,20h) (3D)
平均放散速度 [g/m²h]		27.06 (26.95)	13.54 (13.51)	29.9	13.59 (13.51)	6.79 (6.74)	46.4	0.03 (0.03)	0.02 (0.02)	1.52×10^{-4} (1.52 × 10^{-4})
建材表面濃度 [g/m³]		19.90		10.00			0.05	0.03	1.53×10^{-4} (1.53 × 10^{-4})	
出口濃度 [ɡ/m³]		19.89 18.0		9.99 0.60		0.05	0.03	2.24 × 10 ⁻⁴ (2.25 × 10 ⁻⁴)		
飽和気相濃[g/m ³]		19.90		10.00		0.05	0.03			
平均物質 伝達率 ^{注4)}	1	8	∞	15.7	8	8	4.90	8	8	-1.46 (-1.46)
[g/m ² h(g/m ³)]	2	1.36 (1.35)	0.68 (0.68)	1.50	1.36 (1.35)	0.68 (0.67)	4.64	0.60 (0.60)	0.67 (0.67)	1.25 (1.25)

7 建材面平均物質伝達率 7.1 蒸散支配型建材 2 次元解析 での結果^{×1)}と同様に、建材表面から気中への物質伝達は入口 のごく近くの限られた領域のみで行われている(図 3)。参照濃 度を出口濃度^{注4)}とすると、出口濃度は建材表面濃度に一致し ているため濃度差ゼロとなり、平均物質伝達率①は無限大に近 い値になる。参照濃度を FLEC 入口の濃度とすると、表 3 に 示すように、純水、decane の平均物質伝達率②はほぼ一致す る(case1 で 1.35 [g/m²h(g/m³)])。3 次元解析結果は 2 次元結果 とほぼ一致し、放散速度算出に対するチャンバー内気流の偏り の影響は小さい(表 3)。7.2 内部拡散支配型建材: 合成ゴム (SBR,2mm)の平均物質伝達率①は、参照濃度を FLEC 出口とす ると FLEC 出口濃度が建材表面の平均濃度より高くなるため、 平均物質伝達率は見掛け上負値(23°Cの場に、1.46[g/m²h(g/m³)])とな る。3 次元解析結果は 2 次元結果とほぼ一致し、チャンパー内 気流の偏りの影響は放散速度計測には現れない。

8 結論 (1) 流れ場の3次元解析により、キャビィティ内の気 流分布性状の偏りが観察される。FLECキャビィティ内の流れ 場は層流。(2) 蒸散支配型建材モデルの場合、試料面積が換気 量に比べ相対的に大きいため、①FLEC出口濃度は、建材表面 濃度にほぼ等しく、②物質放散速度は換気量に比例し、③放散 速度は過小評価される恐れが大きい。(3) 内部拡散支配型建材 の場合、FLEC キャビティ内の濃度分布と関わりなく、建材表 面からの局所的な物質放散速度は建材面で一様となる。SBR ような内部拡散支配型建材に対して、FLEC は試験建材面平均 放散速度を正しく測定できると考えられる。(4) 建材の平均放 散速度及び物質伝達率に対するキャビィティ内流れの偏りの 影響は小さい。(謝辞はその 27 にまとめて示す。)

注 1) CFD の解制	〒条件 (3D)		
座標系	直交座標系	メッシュ	260,000
乱流モデル	層流	移流項	QUICK
流入	V _{v.in} =14cn	n/s(case1), V _{x,z,in}	=0
境界条件	V _{y,in} =7cm/	$s(case2,3), V_{x,z,in}$	=0
流出境界条件	質量保存	壁面境界条件	no-slip 条件
対称面	$\partial V / \partial x = 0 \partial V$	$\partial V = 0$ $\partial V = 0$	0
2) 中 均 成 取 散 速 皮 の の の な 広 の の の の の の の の の の	 FLEC サイロ の平均値の局所になる。 の放散面局所になる。 の放散の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水の要となる。 すび水のなる。 <!--</td--><td>- 1 F1 内の記録 局所放散速度は 5 局で放散速度 5 高度 5 高度 5 高度 5 高度 5 高度 5 一 5 一 5 一 5 一 5 一 5 一 5 一 5 一</td><td>12EFUOL RATION RATION RATION RATION RATION RATION RATIONAL REPORT RATIONAL RATIONA</td>	- 1 F1 内の記録 局所放散速度は 5 局で放散速度 5 高度 5 高度 5 高度 5 高度 5 高度 5 一 5 一 5 一 5 一 5 一 5 一 5 一 5 一	12EFUOL RATION RATION RATION RATION RATION RATION RATIONAL REPORT RATIONAL RATIONA
and Laboratory Emiss	sion Cell FLEC: Flo	w Field and Air Veloci	ties, Atmospheric Envi-
ronment 4) 朱清宇	ら (1999),揮発	性有機化合物の加	枚散 吸脱着等のモデ
リングとその数値 生工学会学術講演	直予測に関する 毎梗概集。	研究(その 14~15), 日本空気調和・衛

*1東京大学大学院 院生	*2慶応義塾大学理工学部	教授 工博	^{* 3} 東京大学生産技術研究所 教授 工博
* ⁴ 早稲田大学理工学部 教授 工博	* ⁵ 東京工芸大学	講師 工博	